Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
2.
Syst Appl Microbiol ; 47(2-3): 126489, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38325043

ABSTRACT

Curtobacterium flaccumfaciens (Microbacteriaceae), a plant-pathogenic coryneform species includes five pathovars with valid names and a number of proposed - but unvalidated - new members. In this study, phenotypic features and DNA similarity indexes were investigated among all C. flaccumfaciens members. Results showed that the C. flaccumfaciens pv. poinsettiae strains causing bacterial canker of Euphorbia pulcherrima in the USA as well as the orange-/red-pigmented strains of C. flaccumfaciens pv. flaccumfaciens pathogenic on dry beans in Iran are too distinct from each other and from the type strain of the species to be considered members of C. flaccumfaciens. Hence, the latter two groups were elevated at the species level as C. poinsettiae sp. nov. (ATCC 9682T = CFBP 2403T = ICMP 2566T = LMG 3715T = NCPPB 854T as type strain), and C. aurantiacum sp. nov. (50RT = CFBP 8819T = ICMP 22071T as type strain). Within the emended species C. flaccumfaciens comb. nov., yellow-pigmented strains causing bacterial wilt of dry beans and those causing bacterial canker of Euphorbia pulcherrima in Europe were retained as C. flaccumfaciens pv. flaccumfaciens and C. flaccumfaciens pv. poinsettiae, respectively; while taxonomic position of the sugar beet pathogen C. flaccumfaciens pv. beticola ATCC BAA144PT was confirmed. The newly described onion pathogen C. allii was also reclassified as C. flaccumfaciens pv. allii with the pathotype strain LMG 32517PT. Furthermore, C. flaccumfaciens pv. basellae causing bacterial leaf spot of malabar spinach (Basella rubra) was transferred to C. citreum pv. basellae with ATCC BAA143PT as pathotype.

3.
Microbiol Spectr ; 12(4): e0339523, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38380912

ABSTRACT

Fruit bodies (sporocarps) of wild mushrooms growing in natural environments play a substantial role in the preservation of microbial communities, for example, clinical and food-poisoning bacteria. However, the role of wild mushrooms as natural reservoirs of plant pathogenic bacteria remains almost entirely unknown. Furthermore, bacterial transmission from a mushroom species to agricultural plants has rarely been recorded in the literature. In September 2021, a creamy-white Gram-negative bacterial strain was isolated from the sporocarp of Suillus luteus (slippery jack) growing in Bermuda grass (Cynodon dactylon) lawn in Southern Iran. A similar strain was isolated from the same fungus in the same area in September 2022. Both strains were identified as Burkholderia gladioli based on phenotypic features as well as phylogeny of 16S rRNA and three housekeeping genes. The strains were not only pathogenic on white button mushrooms (Agaricus bisporus) but also induced hypersensitive reaction (HR) on tobacco and common bean leaves and caused soft rot on a set of diverse plant species, that is, chili pepper, common bean pod, cucumber, eggplant, garlic, gladiolus, narcissus, onion, potato, spring onion, okra, kohlrabi, mango, and watermelon. Isolation of plant pathogenic B. gladioli strains from sporocarp of S. luteus in two consecutive years in the same area could be indicative of the role of this fungus in the preservation of the bacterium in the natural environment. B. gladioli associated with naturally growing S. luteus could potentially invade neighboring agricultural crops, for example, vegetables and ornamentals. The potential role of wild mushrooms as natural reservoirs of phytopathogenic bacteria is further discussed.IMPORTANCEThe bacterial genus Burkholderia contains biologically heterogeneous strains that can be isolated from diverse habitats, that is, soil, water, diseased plant material, and clinical specimens. In this study, two Gram-negative pectinolytic bacterial strains were isolated from the sporocarps of Suillus luteus in September 2021 and 2022. Molecular phylogenetic analyses revealed that both strains belonged to the complex species Burkholderia gladioli, while the pathovar status of the strains remained undetermined. Biological investigations accomplished with pathogenicity and host range assays showed that B. gladioli strains isolated from S. luteus in two consecutive years were pathogenic on a set of diverse plant species ranging from ornamentals to both monocotyledonous and dicotyledonous vegetables. Thus, B. gladioli could be considered an infectious pathogen capable of being transmitted from wild mushrooms to annual crops. Our results raise a hypothesis that wild mushrooms could be considered as potential reservoirs for phytopathogenic B. gladioli.


Subject(s)
Agaricus , Basidiomycota , Burkholderia gladioli , Burkholderia , Burkholderia gladioli/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Agaricus/genetics , Burkholderia/genetics , Vegetables
4.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38139383

ABSTRACT

Bacterial diversity analyses often suffer from a bias due to sampling only from a limited number of hosts or narrow geographic locations. This was the case for the phytopathogenic species Dickeya solani, whose members were mainly isolated from a few hosts-potato and ornamentals-and from the same geographical area-Europe and Israel, which are connected by seed trade. Most D. solani members were clonal with the notable exception of the potato isolate RNS05.1.2A and two related strains that are clearly distinct from other D. solani genomes. To investigate if D. solani genomic diversity might be broadened by analysis of strains isolated from other environments, we analysed new strains isolated from ornamentals and from river water as well as strain CFBP 5647 isolated from tomato in the Caribbean island Guadeloupe. While water strains were clonal to RNS05.1.2A, the Caribbean tomato strain formed a third clade. The genomes of the three clades are highly syntenic; they shared almost 3900 protein families, and clade-specific genes were mainly included in genomic islands of extrachromosomal origin. Our study thus revealed both broader D. solani diversity with the characterisation of a third clade isolated in Latin America and a very high genomic conservation between clade members.


Subject(s)
Dickeya , Enterobacteriaceae , Enterobacteriaceae/genetics , Genomics , Water/metabolism
5.
Article in English | MEDLINE | ID: mdl-37737062

ABSTRACT

In 2015, Gram-positive peach-coloured actinobacterial strains were isolated from symptomless tomato phyllosphere in Iran. Biochemical and physiological characteristics, as well as 16S rRNA phylogeny showed that the strains belong to Clavibacter sp., while they were non-pathogenic on the host of isolation, and morphologically distinct from the tomato pathogen C. michiganensis and other plant-associated bacteria. Multilocus sequence analysis of five housekeeping genes showed that the two peach-coloured strains CFBP 8615T (Tom532T) and CFBP 8616 (Tom495) were phylogenetically distinct from all validly described Clavibacter species. Whole genome sequence-based indices, i.e. average nucleotide identity (orthoANI) and digital DNA-DNA hybridization (dDDH), showed that the two peach-colored strains share nearly 100 % orthoANI value with one another, while they differ from all validly described Clavibacter species with the orthoANI/dDDH values <93 % and <50 %, respectively. Thus, based on both phenotypic features and orthoANI/dDDH indices the peach-coloured strains could belong to a new species within Clavibacter. In this study, we provide a formal species description for the peach-coloured tomato-associated Clavibacter strains. Clavibacter lycopersici sp. nov. is proposed for the new species with Tom532T = CFBP 8615T = ICMP 22100T as type strain.


Subject(s)
Actinobacteria , Solanum lycopersicum , Bacterial Typing Techniques , Base Composition , Clavibacter , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
6.
Plant Dis ; 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37775924

ABSTRACT

In 2021, two Gram-negative bacterial strains were isolated from garlic (Allium sativum) bulbs showing decay and soft rot symptoms in central Iran. The bacterial strains were aggressively pathogenic on cactus, garlic, gladiolus, onion, potato, and saffron plants, and induced soft rot symptoms on carrot, cucumber, potato and radish discs. Furthermore, they were pathogenic on sporophore of cultivated and wild mushrooms. Phylogenetic analyses revealed that the bacterial strains belong to Burkholderia gladioli species. Garlic bulb rot caused by B. gladioli has rarely been reported in the literature. Historically, B. gladioli strains had been assigned to four pathovars i.e. B. gladioli pv. alliicola, B. gladioli pv. gladioli, B. gladioli pv. agaricicola, and B. gladioli pv. cocovenenans infecting onion, Gladiolus sp., mushrooms, and poisoning foods, respectively. Multilocus (i.e., 16S rRNA, atpD, gyrB, and lepA genes) sequence-based phylogenetic investigations including reference strains of B. gladioli pathovars showed that the two garlic strains belong to phylogenomic clade 2 of the species which includes the pathotype strain of B. gladioli pv. alliicola. Although the garlic strains were phylogenetically closely related to the B. gladioli pv. alliicola reference strains, they possessed pathogenicity characteristics that overlapped with three of the four historical pathovars including the ability to rot onion (pv. alliicola), gladiolus (pv. gladioli) and mushrooms (pv. agaricicola). Further, pathotype of each pathovar could infect the hosts of other pathovars, undermining the utility of pathovar concept in this species. Overall, using phenotypic pathovar-oriented assays to classify B. gladioli strains should be replaced by phylogenetic or phylogenomic analysis.

7.
Phytopathology ; 113(7): 1185-1191, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36611232

ABSTRACT

Evolutionarily, early-branching xanthomonads, also referred to as clade-1 xanthomonads, include major plant pathogens, most of which colonize monocotyledonous plants. Seven species have been validly described, among them the two sugarcane pathogens Xanthomonas albilineans and Xanthomonas sacchari, as well as Xanthomonas translucens, which infects small-grain cereals and diverse grasses but also asparagus and pistachio trees. Single-gene sequencing and genomic approaches have indicated that this clade likely contains more, yet-undescribed species. In this study, we sequenced representative strains of three novel species using long-read sequencing technology. Xanthomonas campestris pv. phormiicola strain CFBP 8444 causes bacterial streak on New Zealand flax, another monocotyledonous plant. Xanthomonas sp. strain CFBP 8443 has been isolated from common bean, and Xanthomonas sp. strain CFBP 8445 originated from banana. Complete assemblies of the chromosomes confirmed their unique phylogenetic position within clade 1 of Xanthomonas. Genome mining revealed novel genetic features, hitherto undescribed in other members of the Xanthomonas genus. In strain CFBP 8444, we identified genes related to the synthesis of coronatine-like compounds, a phytotoxin produced by several pseudomonads, which raises interesting questions about the evolution and pathogenicity of this pathogen. Furthermore, strain CFBP 8444 was found to contain a second, atypical flagellar gene cluster in addition to the canonical flagellar gene cluster. Overall, this research represents an important step toward better understanding the evolutionary history and biology of early-branching xanthomonads.


Subject(s)
Flagellin , Xanthomonas , Flagellin/genetics , Phylogeny , Plant Diseases/microbiology , Whole Genome Sequencing
8.
Plant Dis ; 107(8): 2279-2287, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36611242

ABSTRACT

Bacterial leaf streak disease caused by Xanthomonas translucens pv. undulosa is an economically important disease threatening wheat and barley crops around the globe. Thus far, specific PCR-based detection and identification tests for X. translucens pathovars are not available. In this study, we used comparative genomics approach to design a pathovar-specific primer pair for detection of X. translucens pv. undulosa in naturally infected seeds and its differentiation from other pathovars of the species. For this aim, complete genome sequences of strains of different X. translucens pathovars were compared and the specific PCR primer pair XtuF/XtuR was designed. These primers were strictly specific to X. translucens pv. undulosa because the expected 229-bp DNA fragment was not amplified in the closely related pathovars or in other xanthomonads, wheat-pathogenic bacteria, and other plant-pathogenic bacteria. High sensitivity of the primer pair XtuF/XtuR allowed detection of pure DNA of the pathogen in a concentration as low as 4.5 pg/µl. The pathogen was also detected in water suspension at a concentration of 8.6 × 102 CFU/ml. The PCR test was capable of detecting the pathogen in extracts of naturally infected wheat seeds at a concentration of 3.5 × 104 CFU/g while a culture-plate method was able to detect the pathogen at a concentration of 50 × 105 CFU/g of the same seeds. The PCR test developed in this study is a step forward for precise detection and identification of X. translucens pv. undulosa to prevent outbreaks of the bacterial leaf streak disease.


Subject(s)
Hordeum , Xanthomonas , Hordeum/microbiology , Genomics , Xanthomonas/genetics , Triticum/microbiology , Polymerase Chain Reaction
9.
Microorganisms ; 10(8)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-36013950

ABSTRACT

Xylophilus ampelinus is the causal agent of blight and canker on grapevine. Only a few data are available on this species implying that the occurrence of this pathogen may be underestimated, and its actual ecological niche may not be understood. Moreover, its genetic diversity is not well known. To improve our knowledge of this species, an analysis of the complete genome sequences available in NCBI was performed. It appeared that several sequences are misidentified. The complete genome sequence of the type strain was obtained and primers designed in order to sequence gyrB and rpoD genes for the strains held in CIRM-CFBP. The genetic barcoding data were obtained for 93 strains, isolated over 35 years and from several geographical origins. The species revealed to be strongly homogenous, displaying nearly identical sequences for all strains. However, the oldest strains of this collection were isolated in 2001 therefore, a new isolation campaign and epidemiological surveys are necessary, along with the obtention of new complete genome sequences for this species.

10.
Article in English | MEDLINE | ID: mdl-35679152

ABSTRACT

The genus Xanthomonas contains a set of diverse bacterial strains, most of which are known for their pathogenicity on annual crops and fruit trees causing economically important plant diseases. Recently, five Xanthomonas strains were isolated from Agrobacterium-induced crown gall tissues of amaranth (Amaranthus sp.) and weeping fig (Ficus benjamina) plants in Iran. Phenotypic characteristics (i.e. biochemical tests and pathogenicity features) and whole genome sequence-based core-genome phylogeny followed by average nucleotide identity and digital DNA-DNA hybridization calculations suggested that these gall-associated strains belong to two new species within the genus Xanthomonas. In this study, we provide a formal species description for these new species where Xanthomonas bonasiae sp. nov. is proposed for the strains isolated from weeping fig with FX4T (=CFBP 8703T=DSM 112530T) as type strain. The name Xanthomonas youngii sp. nov. is proposed for the strains isolated from amaranth with AmX2T (=CFBP 8902T=DSM 112529T) as type strain.


Subject(s)
Xanthomonas , Bacterial Typing Techniques , Base Composition , Crops, Agricultural/genetics , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phylogeny , Plant Tumors/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
Microorganisms ; 10(5)2022 May 13.
Article in English | MEDLINE | ID: mdl-35630466

ABSTRACT

The wide host range phytopathogen D. dianthicola, first described in ornamentals in the 1950s, rapidly became a threat for potato production in Europe and, more recently, worldwide. Previous genomic analyses, mainly of strains isolated from potato, revealed little sequence diversity. To further analyse D. dianthicola genomic diversity, we used a larger genome panel of 41 isolates encompassing more strains isolated from potato over a wide time scale and more strains isolated from other hosts. The phylogenetic and pan-genomic trees revealed a large cluster of highly related genomes but also the divergence of two more distant strains, IPO 256 and 67.19, isolated from potato and impatiens, respectively, and the clustering of the three strains isolated from Kalanchoe with one more distinct potato strain. An SNP-based minimal spanning tree highlighted both diverse clusters of (nearly) clonal strains and several strains scattered in the MST, irrespective of country or date of isolation, that differ by several thousand SNPs. This study reveals a higher diversity in D. dianthicola than previously described. It indicates the clonal spread of this pathogen over long distances, as suspected from worldwide seed trading, and possible multiple introductions of D. dianthicola from alternative sources of contaminations.

12.
Microorganisms ; 10(4)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35456792

ABSTRACT

Biological collections preserve our past, while helping protect our future and increase future knowledge. Plant bacterial culture collections are our security for domestic and global biosecurity. This feature article will provide an introduction to the global position of plant bacterial collections. The role of collections in monitoring plant pathogenic bacteria will be explored through the presentation of five cases studies. These case studies demonstrate why culture collections were imperative for the outcome in each situation. We discuss what we believe should be the best practices to improve microbial preservation and accessioning rates, and why plant bacterial culture collections must increase deposits to be prepared for future emerging pathogens. This is not only the case for global culture collections, but on a much bigger scale, our future scientific successes, our biosecurity decisions and responses, and our knowledge are contingent upon preserving our valuable bacterial strains. It is hoped that once you read this article, you will see the need to deposit your strains in registered public collections and make a concerted effort to build better bacterial culture collections with us.

13.
Microbiol Spectr ; 10(1): e0057721, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35107322

ABSTRACT

In summer 2019, widespread occurrence of crown gall disease caused by Agrobacterium spp. was observed on commercially grown ornamental plants in southern Iran. Beside agrobacteria, pale yellow-pigmented Gram-negative strains resembling the members of Xanthomonas were also associated with crown gall tissues on weeping fig (Ficus benjamina) and Amaranthus sp. plants. The purpose of the present study was to characterize the crown gall-associated Xanthomonas strains using plant inoculation assays, molecular-phylogenetic analyses, and comparative genomics approaches. Pathogenicity tests showed that the Xanthomonas strains did not induce disease symptoms on their host of isolation. However, the strains induced hypersensitive reaction on tobacco, geranium, melon, squash, and tomato leaves via leaf infiltration. Multilocus sequence analysis suggested that the strains belong to clade IA of Xanthomonas, phylogenetically close to Xanthomonas translucens, X. theicola, and X. hyacinthi. Average nucleotide identity and digital DNA-DNA hybridization values between the whole-genome sequences of the strains isolated in this study and reference Xanthomonas strains are far below the accepted thresholds for the definition of prokaryotic species, signifying that these strains could be defined as two new species within clade IA of Xanthomonas. Comparative genomics showed that the strains isolated from crown gall tissues are genetically distinct from X. translucens, as almost all the type III secretion system genes and type III effectors are lacking in the former group. The data obtained in this study provide novel insight into the breadth of genetic diversity of crown gall-associated bacteria and pave the way for research on gall-associated Xanthomonas-plant interactions. IMPORTANCE Tumorigenic agrobacteria-members of the bacterial family Rhizobiaceae-cause crown gall and hairy root diseases on a broad range of plant species. These bacteria are responsible for economic losses in nurseries of important fruit trees and ornamental plants. The microclimate of crown gall and their accompanying microorganisms has rarely been studied for the microbial diversity and population dynamics of gall-associated bacteria. Here, we employed a series of biochemical tests, pathogenicity assays, and molecular-phylogenetic analyses, supplemented with comparative genomics, to elucidate the biological features, taxonomic position, and genomic repertories of five crown gall-associated Xanthomonas strains isolated from weeping fig and Amaranthus sp. plants in Iran. The strains investigated in this study induced hypersensitive reactions (HR) on geranium, melon, squash, tobacco, and tomato leaves, while they were nonpathogenic on their host of isolation. Phylogenetic analyses and whole-genome-sequence-based average nucleotide identity (ANI)/digital DNA-DNA hybridization (dDDH) calculations suggested that the Xanthomonas strains isolated from crown gall tissues belong to two taxonomically unique clades closely related to the clade IA species of the genus, i.e., X. translucens, X. hyacinthi, and X. theicola.


Subject(s)
Phylogeny , Plant Tumors/microbiology , Xanthomonas/classification , Xanthomonas/genetics , Amaranthus/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ficus/microbiology , Genetic Variation , Genome, Bacterial , Genomics , Phenotype , Plant Roots/microbiology , Xanthomonas/isolation & purification , Xanthomonas/metabolism
14.
Phytopathology ; 112(8): 1630-1639, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35196068

ABSTRACT

Xanthomonas arboricola comprises a number of economically important fruit tree pathogens classified within different pathovars. Dozens of nonpathogenic and taxonomically unvalidated strains are also designated as X. arboricola, leading to a complicated taxonomic status in the species. In this study, we have evaluated the whole-genome resources of all available Xanthomonas spp. strains designated as X. arboricola in the public databases to refine the members of the species based on DNA similarity indexes and core genome-based phylogeny. Our results show that, of the nine validly described pathovars within X. arboricola, pathotype strains of seven pathovars are taxonomically genuine, belonging to the core clade of the species regardless of their pathogenicity on the host of isolation (thus the validity of pathovar status). However, strains of X. arboricola pv. guizotiae and X. arboricola pv. populi do not belong to X. arboricola because of the low DNA similarities between the type strain of the species and the pathotype strains of these two pathovars. Thus, we propose to elevate the two pathovars to the rank of a species as X. guizotiae sp. nov. with the type strain CFBP 7408T and X. populina sp. nov. with the type strain CFBP 3123T. In addition, other mislabeled strains of X. arboricola were scattered within Xanthomonas spp. that belong to previously described species or represent novel species that await formal description.


Subject(s)
Plant Diseases , Xanthomonas , Fruit , Phylogeny
16.
J Fungi (Basel) ; 7(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34829250

ABSTRACT

Fungal Oligopeptide Transporters (Fot) Fot1, Fot2 and Fot3 have been found in Saccharomyces cerevisiae wine strains, but not in strains from other environments. In the S. cerevisiae wine strain EC1118, Fot1 and Fot2 are responsible for a broader range of oligopeptide utilization in comparison with strains not containing any Fot. This leads to better fermentation efficiency and an increased production of desirable organoleptic compounds in wine. Despite the benefits associated with Fot activity in S. cerevisiae within the wine environment, little is known about this family of transporters in yeast. The presence of Fot1, Fot2 and Fot3 in S. cerevisiae wine strains is due to horizontal gene transfer from the yeast Torulaspora microellipsoides, which harbors Fot2Tm, FotX and FotY proteins. Sequence analyses revealed that Fot family members have a high sequence identity in these yeast species. In this work, we aimed to further characterize the different Fot family members in terms of subcellular localization, gene expression in enological fermentation and substrate specificity. Using CRISPR/Cas9, we constructed S. cerevisiae wine strains containing each different Fot as the sole oligopeptide transporter to analyze their oligopeptide preferences by phenotype microarrays. The results of oligopeptide consumption show that Fot counterparts have different di-/tripeptide specificities, suggesting that punctual sequence divergence between FOT genes can be crucial for substrate recognition, binding and transport activity. FOT gene expression levels in different S. cerevisiae wine strains during enological fermentation, together with predicted binding motifs for transcriptional regulators in nitrogen metabolism, indicate that these transporters may be under the control of the Nitrogen Catabolite Repression (NCR) system. Finally, we demonstrated that Fot1 is located in the yeast plasma membrane. This work contributes to a better understanding of this family of oligopeptide transporters, which have demonstrated a key role in the utilization of oligopeptides by S. cerevisiae in enological fermentation.

17.
Phytopathology ; 111(4): 611-616, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32997607

ABSTRACT

Xanthomonas theicola is the causal agent of bacterial canker on tea plants. There is no complete genome sequence available for X. theicola, a close relative of the species X. translucens and X. hyacinthi, thus limiting basic research for this group of pathogens. Here, we release a high-quality complete genome sequence for the X. theicola type strain, CFBP 4691T. Single-molecule real-time sequencing with a mean coverage of 264× revealed two contigs of 4,744,641 bp (chromosome) and 40,955 bp (plasmid) in size. Genome mining revealed the presence of nonribosomal peptide synthases, two CRISPR systems, the Xps type 2 secretion system, and the Hrp type 3 secretion system. Surprisingly, this strain encodes an additional type 2 secretion system and a novel type 3 secretion system with enigmatic function, hitherto undescribed for xanthomonads. Four type 3 effector genes were found on complete or partial transposons, suggesting a role of transposons in effector gene evolution and spread. This genome sequence fills an important gap to better understand the biology and evolution of the early-branching xanthomonads, also known as clade-1 xanthomonads.


Subject(s)
Genome, Bacterial , Xanthomonas , Genome, Bacterial/genetics , Phylogeny , Plant Diseases , Tea , Xanthomonas/genetics
18.
Microorganisms ; 8(9)2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32962307

ABSTRACT

Bacterial collections are invaluable tools for microbiologists. However, their practical use is compromised by imprecise taxonomical assignation of bacterial strains. This is particularly true for soft rotting plant pathogens of the Pectobacterium genus. We analysed the taxonomic status of 265 Pectobacterium strains deposited at CIRM-CFBP collection from 1944 to 2020. This collection gathered Pectobacterium strains isolated in 27 countries from 32 plant species representing 17 botanical families or from nonhost environments. The MLSA approach completed by genomic analysis of 15 strains was performed to update the taxonomic status of these 265 strains. The results showed that the CIRM-CFBP Pectobacterium collection harboured at least one strain of each species, with the exception of P. polonicum. Yet, seven strains could not be assigned to any of the described species and may represent at least two new species. Surprisingly, P. versatile, recently described in 2019, is the most prevalent species among CIRM-CFBP strains. An analysis of P. versatile strains revealed that this species is pandemic and isolated from various host plants and environments. At the opposite, other species gathered strains isolated from only one botanical family or exclusively from a freshwater environment. Our work also revealed new host plants for several Pectobacterium spp.

19.
Syst Appl Microbiol ; 43(4): 126087, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32690196

ABSTRACT

Assessment of the taxonomy and diversity of Xanthomonas strains causing bacterial leaf spot of lettuce (BLSL), commonly referred to as Xanthomonas campestris pv. vitians, has been a long-lasting issue which held back the global efforts made to understand this pathogen. In order to provide a sound basis essential to its study, we conducted a polyphasic approach on strains obtained through sampling campaigns or acquired from collections. Results of a multilocus sequence analysis crossed with phenotypic assays revealed that the pathotype strain does not match the description of the nomenspecies provided by Brown in 1918. However, strain LMG 938=CFBP 8686 does fit this description. Therefore, we propose that it replaces LMG 937=CFBP 2538 as pathotype strain of X. campestris pv. vitians. Then, whole-genome based phylogenies and overall genome relatedness indices calculated on taxonomically relevant strains exhibited the intermediate position of X. campestris pv. vitians between closely related species Xanthomonas hortorum and Xanthomonas cynarae. Phenotypic profiles characterized using Biolog microplates did not reveal stable diagnostic traits legitimizing their distinction. Therefore, we propose that X. cynarae Trébaol et al. 2000 emend. Timilsina et al. 2019 is a later heterotypic synonym of X. hortorum, to reclassify X. campestris pv. vitians as X. hortorum pv. vitians comb. nov. and to transfer X. cynarae pathovars in X. hortorum as X. hortorum pv. cynarae comb. nov. and X. hortorum pv. gardneri comb. nov. An emended description of X. hortorum is provided, making this extended species a promising model for the study of Xanthomonas quick adaptation to different hosts.


Subject(s)
/microbiology , Plant Diseases/microbiology , Xanthomonas/classification , DNA, Bacterial/genetics , Genes, Essential/genetics , Genome, Bacterial/genetics , Nucleic Acid Hybridization , Phenotype , Phylogeny , Sequence Analysis, DNA , Terminology as Topic , Xanthomonas/genetics , Xanthomonas/isolation & purification , Xanthomonas/pathogenicity
20.
Plant Dis ; 104(4): 1011-1012, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32065568

ABSTRACT

The bacterial plant pathogen Xanthomonas hyacinthi is the causal agent of yellow disease of Hyacinthus and other ornamental plant genera. There is no available complete genome for X. hyacinthi, limiting basic research for this pathogen. Here, we release a high-quality complete genome sequence for the X. hyacinthi type strain, CFBP 1156. Single-molecule real-time (SMRT) sequencing with a mean coverage of 306× revealed two contigs of 4,918,645 and 44,381 bp in size. This was the first characterized plant-disease-causing species of Xanthomonas and this genome provides a resource to better understand the biology of yellow disease of hyacinth.


Subject(s)
Xanthomonas , Genome, Bacterial , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...